4.5 Article

Matched-field replica model optimization and bottom property inversion in shallow water

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 107, Issue 3, Pages 1301-1323

Publisher

AMER INST PHYSICS
DOI: 10.1121/1.428418

Keywords

-

Ask authors/readers for more resources

Matched-field replica models based on an inaccurate knowledge of geoacoustic parameters such as bottom attenuation, shear, and interfacial sound-speed discontinuities, can predict an incorrect number of propagating modes for a shallow-water channel. The resulting degradation in the matched-field ambiguity surface can be substantially reduced by obtaining optimal replica models via modal-sum-limit optimization or bottom-property inversion. The use of these techniques for multi-tone (70, 95, 145, and 195 Hz) source-tow data recorded near San Diego during the first Shallow-Water Evaluation Cell Experiment (SWellEX-1) significantly increased matched-field correlation levels and improved source localization relative to results obtained with a previous nonoptimized model. The predicted number of propagating modes was also reduced substantially. The inversion for bottom properties (attenuation, interfacial sound-speed discontinuities, no shear) provided sediment attenuation estimates which agree well with Hamilton's models and were an order-of-magnitude greater than that used in the nonoptimized model, which accounts for the reduction in the number of modes. A simulated modal decomposition using the inverted optimal replica model verifies the number of modes predicted by the modal-sum-limit optimization. [S0001-4966(00)00103-X].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available