4.7 Review

Calcium signalling: a historical account, recent developments and future perspectives

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 57, Issue 3, Pages 354-370

Publisher

SPRINGER BASEL AG
DOI: 10.1007/PL00000698

Keywords

calcium; second messengers; signalling

Ask authors/readers for more resources

Ca2+ is a uniquely important messenger that penetrates into cells through gated channels to transmit signals to a large number of enzymes. The evolutionary choice of Ca2+ was dictated by its unusual chemical properties, which permit its reversible complexation by specific proteins in the presence of much larger amounts of other potentially competing cations. The decoding of the Ca2+ signal consists in two conformational changes of the complexing proteins, of which calmodulin is the most important. The first occurs when Ca2+ is bound, the second (a collapse of the elongated protein) when interaction with the targeted enzymes occurs. Soluble proteins such as calmodulin contribute to the buffering of cell Ca2+, but membrane intrinsic transporting proteins are more important. Ca2+ is transported across the plasma membrane (channel, a pump, a Na+/Ca2+ exchanger) and across the membrane of the organelles. The endoplasmic reticulum is the most dynamic store: it accumulates Ca2+ by a pump, and releases it via channels gated by either inositol 1,4,5-trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPr). The mitochondrion is more sluggish, but it is closed-connected with the reticulum, and senses microdomains of high Ca2+ close to IF, or cADPr release channels. The regulation of Ca2+ in the nucleus, where important Ca2'-sensitive processes reside, is a debated issue. Finally, if the control of cellular Ca2+ homeostasis somehow fails (excess penetration), mitochondria buy time by precipitating inside Ca2+ and phosphate. If injury persists, Ca2+-death eventually ensues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available