4.7 Article Proceedings Paper

Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 196, Issue 2, Pages 177-182

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-5173(99)00422-6

Keywords

nanoparticles; encapsulation; double emulsion technique; poly[lactic-co-glycolic acid]; poly[epsilon-caprolactone]; BSA

Ask authors/readers for more resources

The preparation of nanoparticles (NP) as an improved colloidal carrier system for proteins was investigated. Bovine serum albumin (BSA) was used as model drug. Owing to the high solubility of the protein in water, the double emulsion technique has been chosen as one of the most appropriate method. In order to both reaching submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, a microfluidizer as homogenization device was used. All experiments were performed using two biodegradable polymers, poly[D,L-lactic-co-glycolic acid] 50/50 (PLGA) and poly[epsilon-caprolactone] (PCL). The homogenization procedure has been optimized with regard to particle size and monodispersity by studying the influence of the homogenization time as well as the amount of polymer and surfactant in the external aqueous phase. The drug loading has been improved by varying the concentration of the protein in the inner aqueous phase. By increasing the protein concentration in the inner aqueous phase the polydispersity was slightly higher, while the particle size was not influenced significantly. The BSA encapsulation efficiency decreased with higher protein concentration in the inner aqueous phase. All release profiles were characterized by a initial burst effect, a higher release rate was obtained after 4 weeks for PLGA NP (60%) compared with PCL NP (47%). (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available