4.7 Article Proceedings Paper

Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 196, Issue 2, Pages 257-261

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-5173(99)00435-4

Keywords

silica; nanoparticle; DNA carrier; gene delivery

Ask authors/readers for more resources

We synthesised silica nanoparticles (SiNP) with covalently linked cationic surface modifications and demonstrated their ability to electrostatically bind, condense and protect plasmid DNA. These particles might be utilised as DNA carriers for gene delivery. All nanoparticles were sized between 10 and 100 nm and displayed surface charge potentials from +7 to +31 mV at pH 7.4. They were produced by modification of commercially available (IPAST) or in-house synthesised silica particles with either N-(2-aminoethyl)-3-aminopropyltrimethoxysilane or N-(6-aminohexyl)-3-aminopropyltrimethoxysilane. Ail particles formed complexes with pCMVbeta plasmid DNA as evidenced by ratio dependend retardation of DNA in the agarosegel and co-sedimentation of soluble DNA with nanoparticles. High salt and alkaline pH did inhibit complex formation. Absorption onto the particles also decreased the hydrodynamic dimensions of plasmid DNA as shown by photon correlation spectroscopy. Complexes formed in water at a w/w ratio of Si26H:DNA (pCMVbeta) of 300 were smallest with a mean hydrodynamic diameter of 83 nm. For effective condensation a w/w ratio of Si26H:DNA of 30 was sufficient. Further, the absorbed DNA was protected from enzymatic degradation by DNase I. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available