4.5 Article

Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 17, Issue 6, Pages 1857-1873

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-018-1061-4

Keywords

Gaussian process regression; Patient-specific simulation; Multi-view stereo; Nonlinear finite elements; Principal component analysis; Uncertainty propagation

Ask authors/readers for more resources

Excessive mechanical stress following surgery can lead to delayed healing, hypertrophic scars, and even skin necrosis. Measuring stress directly in the operating room over large skin areas is not feasible, and nonlinear finite element simulations have become an appealing alternative to predict stress contours on arbitrary geometries. However, this approach has been limited to generic cases, when in reality each patient geometry and procedure are unique, and material properties change from one person to another. In this manuscript, we use multi-view stereo to capture the patient-specific geometry of a 7-year-old female undergoing cranioplasty and complex tissue rearrangement. The geometry is used to setup a nonlinear finite element simulation of the reconstructive procedure. A key contribution of this work is incorporation of material behavior uncertainty. The finite element simulation is computationally expensive, and it is not suitable for uncertainty propagation which would require many such simulations. Instead, we run only a few expensive simulations in order to build a surrogate model by Gaussian process regression of the principal components of the stress fields computed with these few samples. The inexpensive surrogate is then used to compute the statistics of the stress distribution in this patient-specific scenario.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available