4.5 Article

Computational and experimental investigation of local stress fiber orientation in uniaxially and biaxially constrained microtissues

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 13, Issue 5, Pages 1053-1063

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-014-0554-z

Keywords

Stress fibers; Cell orientation; Mechanical environment; Simulation

Funding

  1. BioMedical Materials institute [P1.04 SMARTCARE]
  2. Dutch Ministry of Economic Affairs
  3. Nederlandse Hartstichting

Ask authors/readers for more resources

The orientation of cells and associated F-actin stress fibers is essential for proper tissue functioning. We have previously developed a computational model that qualitatively describes stress fiber orientation in response to a range of mechanical stimuli. In this paper, the aim is to quantitatively validate the model in a static, heterogeneous environment. The stress fiber orientation in uniaxially and biaxially constrained microscale tissues was investigated using a recently developed experimental system. Computed and experimental stress fiber orientations were compared, while accounting for changes in orientation with location in the tissue. This allowed for validation of the model, and additionally, it showed how sensitive the stress fiber orientation in the experimental system is to the location where it is measured, i.e., the heterogeneity of the stress fiber orientation. Computed and experimental stress fiber orientations showed good quantitative agreement in most regions. A strong local alignment near the locations where boundary conditions were enforced was observed for both uniaxially and biaxially constrained tissues. Excepting these regions, in biaxially constrained tissues, no preferred orientation was found and the distribution was independent of location. The stress fiber orientation in uniaxially constrained tissues was more heterogeneous, and stress fibers mainly oriented in the constrained direction or along the free edge. These results indicate that the stress fiber orientation in these constrained microtissues is mainly determined by the local mechanical environment, as hypothesized in our model, and also that the model is a valid tool to predict stress fiber orientation in heterogeneously loaded tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available