4.5 Article

Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 11, Issue 3-4, Pages 391-401

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-011-0319-x

Keywords

hMSCs; Osteogenesis; FSS; Perfusion culture

Funding

  1. National Natural Science Fund of China [30971460]
  2. Scientific Research from Scientific Fund of Zhejiang [2009C13020]

Ask authors/readers for more resources

A reasonable mechanical microenvironment similar to the bone microenvironment in vivo is critical to the formation of engineering bone tissues. As fluid shear stress (FSS) produced by perfusion culture system can lead to the osteogenic differentiation of human mesenchymal stem cells (hMSCs), it is widely used in studies of bone tissue engineering. However, effects of FSS on the differentiation of hMSCs largely depend on the FSS application manner. It is interesting how different FSS application manners influence the differentiation of hMSCs. In this study, we examined the effects of intermittent FSS and continuous FSS on the osteogenic differentiation of hMSCs. The phosphorylation level of ERK1/2 and FAK is measured to investigate the effects of different FSS application manners on the activation of signaling molecules. The results showed that intermittent FSS could promote the osteogenic differentiation of hMSCs. The expression level of osteogenic genes and the alkaline phosphatase (ALP) activity in cells under intermittent FSS application were significantly higher than those in cells under continuous FSS application. Moreover, intermittent FSS up-regulated the activity of ERK1/2 and FAK. Our study demonstrated that intermittent FSS is more effective to induce the osteogenic differentiation of hMSCs than continuous FSS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available