4.8 Article

Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface

Journal

BIOMATERIALS
Volume 35, Issue 7, Pages 2120-2129

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.11.058

Keywords

Graphene oxide; Conducting polymer; Electrode-tissue interface; Microelectrode; Electrochemical deposition; Tissue engineering

Funding

  1. National Natural Science Foundation of China [51035005, 61176104]
  2. 973 Program [2013CB329401]
  3. Shanghai Municipal Science and Technology Commission [11JC1405700, 13511500200]
  4. NDPR Foundation of China [9140A26060313JW3385]

Ask authors/readers for more resources

One of the most significant components for implantable bioelectronic devices is the interface between the microelectrodes and the tissue or cells for disease diagnosis or treatment. To make the devices work efficiently and safely in vivo, the electrode-tissue interface should not only be confined in micro scale, but also possesses excellent electrochemical characteristic, stability and biocompatibility. Considering the enhancement of many composite materials by combining graphene oxide (GO) for its multiple advantages, we dope graphene oxide into poly(3,4-ethylenedioxythiophene) (PEDOT) forming a composite film by electrochemical deposition for electrode site modification. As a consequence, not only the enlargement of efficient surface area, but also the development of impedance, charge storage capacity and charge injection limit contribute to the excellent electrochemical performance. Furthermore, the stability and biocompatibility are confirmed by numerously repeated usage test and cell proliferation and attachment examination, respectively. As electrode-tissue interface, this biomaterial opens a new gate for tissue engineering and implantable electrophysiological devices. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available