4.8 Article

Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics

Journal

BIOMATERIALS
Volume 35, Issue 7, Pages 2346-2354

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.11.075

Keywords

Targeted therapy; Drug delivery; HER2(+) breast cancer; Nanocarriers; Bioorthogonal click chemistry

Funding

  1. Susan G. Komen for the Cure [KG100594]

Ask authors/readers for more resources

Nanocarriers play an important role in targeted cancer chemotherapy. The optimal nanocarrier delivery system should provide efficient and highly specific recognition of the target cells and rapid internalization of the therapeutic cargo to reduce systemic toxicity as well as to increase the cytotoxicity to cancer cells. To this end, we developed a two-step, two-component targeted delivery system based on antibody and drug-loaded nanocarrier that uses bioorthogonal click reactions for specific internalization of nanotherapeutics. The pretargeting component, anti-HER2 humanized monoclonal antibody, trastuzumab, functionalized with azide groups labels cancer cells that overexpress HER2 surface receptors. The drug carrier component, dibenzylcyclooctyne substituted albumin conjugated with paclitaxel, reacts specifically with the pretargeting component. These two components form cross-linked clusters on the cell surface, which facilitates the internalization of the complex. This strategy demonstrated substantial cellular internalization of clusters consisted of HER2 receptors, modified trastuzumab and paclitaxel-loaded albumin nanocarriers, and subsequent significant cytotoxicity in HER2-positive BT-474 breast cancer cells. Our results show high efficacy of this strategy for targeted nanotherapeutics. We foresee to broaden the applications of this strategy using agents such as radionuclides, toxins, and interfering RNA. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available