4.8 Article

Redox-responsive polyanhydride micelles for cancer therapy

Journal

BIOMATERIALS
Volume 35, Issue 9, Pages 3080-3090

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.12.025

Keywords

Micelle; Redox-responsive; Nanocarrier; Drug delivery; Cancer therapy

Funding

  1. National Basic Research Program of China (973 Program) [2012CB933600]
  2. National Natural Science Foundation of China [51173150, 51373138]
  3. National Key Project of Scientific and Technical Supporting Programs
  4. MSTC [2012BAI17B06]
  5. Research Fund for the Doctoral Program of Higher Education of China [20120184110029]
  6. Fundamental Research Funds for The Central Universities [SWJTU11ZT10]

Ask authors/readers for more resources

Biodegradable polyanhydrides possess unique features like those that they can predominantly undergo surface erosion, and the payloads can be released by a steady speed. However, there is little work that has been published to describe the polyanhydride micelles with redox-responsiveness as a nanocarrier for drug delivery. In this study, we develop one type of new amphiphilic polyanhydride copolymer containing disulfide bonds between the hydrophilic and hydrophobic segments. The copolymer can self-assemble into stable micelles with well-defined core shell structure and a uniform size distribution with an average diameter of 69 nm. The disassembly behaviors of the micelles triggered by glutathione are evaluated from the changes of the micellar size, morphology and molecular weight. An approximate zero-order in vitro drug release mode with a fast speed can be achieved in a reducing and acid environment similar with that of tumor cells. In vitro cytotoxicity analysis demonstrate that the Cur-loaded micelles are of great efficiency in inhibiting the growth of cancer cells due to the rapidly intracellular delivery of therapeutic agent. Both the qualitative and quantitative results of the antitumor activity in 4T1 tumor-bearing BALB/c mice reveal that the redox-responsive micelles have a more significant therapeutic effect to artificial solid tumor compared to the redox-insensitive micelles. This study provides a new insight into the biomedical application of polyanhydrides in drug delivery. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available