4.5 Article

Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus

Journal

HUMAN MOLECULAR GENETICS
Volume 9, Issue 5, Pages 779-785

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/9.5.779

Keywords

-

Funding

  1. NINDS NIH HHS [NS27699] Funding Source: Medline

Ask authors/readers for more resources

To elucidate the pathophysiology of spinocerebellar ataxia type 1 (SCA1) and to evaluate repeat length instability in the context of the mouse Sca1 gene, we generated knock-in mice by inserting an expanded tract of 78 CAG repeats into the mouse Sca1 locus, Mice heterozygous for the CAG expansion show intergenerational repeat instability (+2 to -6) at a much higher frequency in maternal transmission than in paternal transmission. The majority of changes transmitted through the female germline were small contractions, as in humans, whereas small expansions occurred more frequently in paternal transmission. The frequency of intergenerational changes was age dependent for both paternal and maternal transmissions. Mice homozygous for mutant ataxin-1 on a C57BL/6J-129/SvEv mixed background performed significantly less well on the rotating rod than did wild-type littermates at 9 months of age, although they were not ataxic by cage behavior. Histological examination of brain tissue from mutant mice up to 18 months of age revealed none of the neuropathological changes observed in other transgenic models overexpressing expanded polyglutamine tracts. These data suggest that, even with 78 glutamines, prolonged exposure to mutant ataxin-1 at endogenous levels is necessary to produce a neurological phenotype reminiscent of human SCA1, Pathogenesis is thus a function of polyglutamine length, protein levels and duration of neuronal exposure to the mutant protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available