4.8 Article

Evidence for a recessive inheritance of Turcot's syndrome caused by compound heterozygous mutations within the PMS2 gene

Journal

ONCOGENE
Volume 19, Issue 13, Pages 1719-1723

Publisher

STOCKTON PRESS
DOI: 10.1038/sj.onc.1203447

Keywords

Turcot syndrome; PMS2 gene; brain and colorectal tumors; microsatellite instability (MIN)

Ask authors/readers for more resources

Turcot's syndrome is a genetic disease characterized by the concurrence of primary brain tumors and colon cancers and/or multiple colorectal adenomas. We report a Turcot family with no parental consanguinity, in which two affected sisters, with no history of tumors in their parents, died of a brain tumor and of a colorectal tumor, respectively, at a very early age. The proband had a severe microsatellite instability (MIN) phenotype in both tumor and normal colon mucosa, and mutations in the TGF beta-RII and APC genes in the colorectal tumor. We identified two germline mutations within the PMS2 gene: a G deletion (1221delG) in exon 11 and a four-base-pair deletion (2361delCTTC) in exon 14, both of which were inherited from the patient's unaffected parents. These results represent the first evidence that two germline frameshift mutations in PMS2, an MMR gene which is only rarely involved in HNPCC, are not pathogenic per se, but become so when occurring together in a compound heterozygote, The compound heterozygosity for two mutations in the PMS2 gene has implications for the role of protein PMS2 in the mismatch repair mechanism, as well as for the presymptomatic molecular diagnosis of at-risk family members. Furthermore, our data support and enlarge the notion that high DNA instability in normal tissues might trigger the development of cancer in this syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available