4.8 Review

Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review

Journal

BIOMATERIALS
Volume 35, Issue 33, Pages 9068-9086

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.07.020

Keywords

Polyaniline; Polyaniline oligomers; Conducting polymers; Tissue engineering; Electrical stimulation

Ask authors/readers for more resources

Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available