4.8 Article

Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold

Journal

BIOMATERIALS
Volume 34, Issue 11, Pages 2655-2664

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.01.004

Keywords

Adipose derived stem cells; Allogeneic; Cranial bone regeneration; Canine model; Coral

Funding

  1. Natural Science Foundation of China [30970743, 30800232, 31271027, 81171475]
  2. National 863 Project Foundation [2009 AA02Z110]
  3. Science and Technology Commission of Shanghai Municipality Foundation [09XD1402800]

Ask authors/readers for more resources

Adipose tissue derived stem cells (ASCs) based therapies for the repair and regeneration of various tissues have been widely investigated recently because of their multilineage potential and self-renewal capability. Our previous study demonstrated that autologous ASCs loaded onto natural coral scaffolds could repair cranial critical-sized defects (CSDs) in a canine model. The objective of this study was to determine whether the use of allogeneic ASCs could heal the same defect without the use of immunosuppressive therapy. The pedigree mismatch, mixed lymphocyte reaction assays (MLRs) and allogeneic skin graft experiments were performed to confirm unrelated ASC donors and recipients. A total of 12 adult Beagle dogs were enrolled in this study and divided into two groups. Bilateral cranial CSDs were created in each animal. The right-side defect was treated with allogeneic ASCs delivered onto a coral scaffold, and the left defect was either filled with an autologous ASC/coral composite (Group 1, n = 5) or with one coral scaffold alone (Group 2, n = 5). The systematic immune response and bone healing were evaluated postoperatively. The results showed that allogeneic ASC transplantation did not induce a systemic immune response by the hosts, and allogeneic ASCs could repair the cranial CSDs in an analogous way to that of the autologous cells. Moreover, both the green fluorescently labeled allogeneic and autologous ASCs were detected within the lacunae of newly formed bone in the defect site at 24 weeks, illustrating that the grafted ASCs contributed directly to bone regeneration in vivo. Thus, we concluded that allogeneic ASCs have the capacity to regenerate bone within craniofacial defects, providing an alternative source of seed cells for bone tissue engineering. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available