4.8 Article

Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology

Journal

BIOMATERIALS
Volume 34, Issue 28, Pages 6706-6716

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.05.038

Keywords

Regeneration; Joint; PGA/PLA; PCL/HA; CAD/CAM

Funding

  1. Fund for Key Disciplines of Shanghai Municipal Education Commission [J50206]
  2. Ministry of Science and Technology of China [2011DFA30790, 2012AA020507]
  3. Chinese Academy of Sciences [XDA01030404]
  4. National Natural Science Foundation of China [81190133]

Ask authors/readers for more resources

Tissue engineering is considered as a promising approach for the regeneration of biological joint theoretically and thus provides a potential treatment option for advanced osteoarthritis. However, no significant progresses so far have been made in regenerating biological joint. In this study, a biphasic scaffold, which was consisted of polylactic acid-coated polyglycolic acid (PGA/PLA) scaffold and poly-epsilon-caprolactone/hydroxyapatite (PCL/HA) scaffold, was designed and used for regeneration of goat femoral head. The content of PLA and HA was optimized to a proper ratio, thus the scaffolds could achieve appropriate stiffness which was more conducive to articular cartilage and bone regeneration respectively. Furthermore, computer-aided design and manufacturing (CAD/CAM) technology was employed to fabricate the biphasic scaffolds into the desired shape and structure. The biphasic scaffolds with fine cell biocompatibility matched perfectly. Chondrocytes and bone marrow stromal cells (BMSCs) were seeded into the scaffolds for cartilage and bone regeneration respectively. After 10 weeks of implantation in nude mice subcutaneously, the cell scaffold constructs successfully regenerated goat femoral heads. The regenerated femoral heads presented a precise appearance in shape and size similar to that of native goat femoral heads with a smooth, continuous, avascular, and homogeneous cartilage layer on the surface and stiff bone-like tissue in the microchannels of PCL/HA scaffold. Additionally, histological examination of the regenerated cartilage and bone showed typical histological structures and biophysical properties similar to that of native ones with specific matrix deposition and a well-integrated osteochondral interface. The strategy established in the study provides a promising approach for regenerating a biological joint which could be used to reconstruct the impaired joint. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available