4.8 Article

Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases

Journal

BIOMATERIALS
Volume 34, Issue 4, Pages 1270-1280

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.10.013

Keywords

Chitosan; PEG; TAT; siRNA; Nanoparticles; Gene delivery

Funding

  1. FRSQ doctoral scholarship
  2. NSERC

Ask authors/readers for more resources

Delivery of therapeutic molecules to the brain for the treatment of Neurodegenerative diseases (ND) is a challenging task. This manuscript introduces a novel scheme of synthesizing peptide-tagged polyethylene glycol (PEG)ylated chitosan polymer to develop nanoparticles for siRNA delivery for use in ND. Specifically, this manuscript proposes a facile chemoselective conjugation of monomethoxy PEG, at the C2 hydroxyl group of chitosan polymer, with conjugation of PEG to a cell-penetrating peptide, Trans-Activator of Transcription. The synthesized Chitosan-PEG-TAT polymer was used to form the nanoparticles of approximately 5 nm, complexing siRNA to be delivered in neuronal cells (Neuro 2a), with no/minimal toxicity. The various intermediates and the final product formed during the synthesis were characterized using H-1 Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy spectra. The morphological details of the nanoparticles were studied using Transmission Electron Microscopy. The nanoparticles were tested to deliver a functional siRNA against the Ataxin-1 gene in an in-vitro established model of a ND Spinocerebellar ataxia (SCA1) over-expressing ataxin protein. The results indicate successful suppression of the SCA1 protein following 48 h of transfection. Result of this study has potential in ND like SCA, Parkinson's, Alzheimer's and others. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available