4.8 Article

Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration

Journal

BIOMATERIALS
Volume 34, Issue 38, Pages 10191-10198

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.08.069

Keywords

Tissue engineering; Monoclonal antibody; Scaffold; Growth factor; Bone morphogenetic protein

Funding

  1. NIDCR [T90DE021982]
  2. USC Office of Postdoctoral Affairs

Ask authors/readers for more resources

Recent studies have demonstrated the ability of murine anti-BMP-2 monoclonal antibodies (mAb) immobilized on an absorbable collagen sponge (ACS) to mediate de novo bone formation, a process termed antibody-mediated osseous regeneration (AMOR). The objectives of this study were to assess the efficacy of a newly generated chimeric anti-BMP-2 mAb in mediating AMOR, as well as to evaluate the suitability of different biomaterials as scaffolds to participate in AMOR. Chimeric anti-BMP-2 mAb was immobilized on 4 biomaterials, namely, titanium microbeads (Ti), alginate hydrogel, macroporous biphasic calcium phosphate (MBCP) and ACS, followed by surgical implantation into rat critical-size calvarial defects. Animals were sacrificed after 8 weeks and the degree of bone fill was assessed using micro-CT and histomorphometry. Results demonstrated local persistence of chimeric anti-BMP-2 mAb up to 8 weeks, as well as significant de nova bone regeneration in sites implanted with chimeric anti-BMP-2 antibody immobilized on each of the 4 scaffolds. Ti and MBCP showed the highest volume of bone regeneration, presumably due to their resistance to compression. Alginate and ACS also mediated de novo bone formation, though significant volumetric shrinkage was noted. In vitro assays demonstrated cross-reactivity of chimeric anti-BMP-2 mAb with BMP-4 and BMP-7. Immune complex of anti-BMP-2 mAb with BMP-2 induced osteogenic differentiation of C2C12 cells in vitro, involving expression of RUNX2 and phosphorylation of Smad1. The present data demonstrated the ability of chimeric anti-BMP-2 mAb to functionalize different biomaterial with varying characteristics to mediate osteogenesis. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available