4.8 Article

Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells

Journal

BIOMATERIALS
Volume 34, Issue 31, Pages 7616-7625

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.06.059

Keywords

Stiffness; Topography; Dimension; Stem cell; Proliferation; Differentiation

Funding

  1. National Natural Science Foundation of China [31110103918]
  2. National Key Basic Research Foundation of China [2011CB710904]
  3. Strategic Priority Research Program [XDA01030102]
  4. National High Technology Research and Development Program of China [2011AA020109]

Ask authors/readers for more resources

The physiological microenvironment of the stem cell niche, including the three factors of stiffness, topography, and dimension, is crucial to stem cell proliferation and differentiation. Although a growing body of evidence is present to elucidate the importance of these factors individually, the interaction of the biophysical parameters of the factors remains insufficiently characterized, particularly for stem cells. To address this issue fully, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities, two topographies, and three dimensions to systematically test proliferation, morphology and spreading, differentiation, and cytoskeletal re-organization of rat bone marrow mesenchymal stem cells (rBMSCs) on twelve cases. An isolated but not combinatory impact of the factors was found regarding the specific functions. Substrate stiffness or dimension is predominant in regulating cell proliferation by fostering cell growth on stiff, unevenly dimensioned substrate. Topography is a key factor for manipulating cell morphology and spreading via the formation of a large spherical shape in a pillar substrate but not in a grooved substrate. Although stiffness leads to osteogenic or neuronal differentiation of rBMSCs on a stiff or soft substrate, respectively, topography or dimension also plays a lesser role in directing cell differentiation. Neither an isolated effect nor a combinatory effect was found for actin or tubulin expression, whereas a seemingly combinatory effect of topography and dimension was found in manipulating vimentin expression. These results further the understandings of stem cell proliferation, morphology, and differentiation in a physiologically mimicking microenvironment. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available