4.8 Article

Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery

Journal

BIOMATERIALS
Volume 34, Issue 37, Pages 9632-9637

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.08.045

Keywords

Non-viral gene delivery; Peptide copolymers; Targeted delivery; Neuron delivery; HPMA polymer

Funding

  1. NIH/NINDS [1R01 NS064404]
  2. NIH [T32 CA138312]

Ask authors/readers for more resources

Targeted gene delivery vectors can enhance cellular specificity and transfection efficiency. We demonstrated previously that conjugation of Tet1, a peptide that binds to the GT1b ganglioside, to polyethylenimine results in preferential transfection of neural progenitor cells in vivo. In this work, we investigate the effect of Tet1 ligand density on gene delivery to neuron-like, differentiated PC-12 cells. A series of statistical, cationic peptide-based polymers containing various amounts (1-5 mol%) of Tet1 were synthesized via one-pot reversible addition-fragmentation chain transfer (RAFT) polymerization by copolymerization of Tet1 and oligo-L-lysine macromonomers with N-(2-hydroxypropyl)methacrylamide (HPMA). When complexed with plasmid DNA, the resulting panel of Tet1-functionalized polymers formed particles with similar particle size as particles formed with untargeted HPMA oligolysine copolymers. The highest cellular uptake in neuron-like differentiated PC-12 cells was observed using polymers with intermediate Tet1 peptide incorporation. Compared to untargeted polymers, polymers with optimal incorporation of Tet1 increased gene delivery to neuron-like PC-12 cells by over an order of magnitude but had no effect compared to control polymers in transfecting NIH/3T3 control cells. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available