4.8 Article

A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting

Journal

BIOMATERIALS
Volume 34, Issue 38, Pages 10120-10132

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2013.09.006

Keywords

Gene delivery system; Tumor targeting; Lysosomal escape; Nuclear locating sequence; Gene transfection

Funding

  1. Natural Science Foundation Committee of China [81173004, 81202483]

Ask authors/readers for more resources

In this study, pH-sensitive biomaterials coated polymer/DNA nanocomplexes containing a high mobility group box 1 (HMGB1) were developed as an efficient non-viral gene delivery system. HMGB 1 is a family of endogenous molecules that contains nuclear locating sequences (NSL). Polyethylene glycol tethered carboxylated chitosan modified with folic acid (FA-PEG-CCTS) was synthesized and its buffering capacity was determined by acid-base titration. A pH-sensitive core-shell system FA-PEG-CCTS/PAMAM/HMGB1/pDNA nanocomplexes (FPCPHDs), was prepared and characterized. Electrophoresis showed that FPCPHDs were resistant to heparin replacement and DNase I digestion. FPCPHDs exhibited only minor toxic effects on HepG2 and KB cells. The results of both luciferase activity assay and RFP fluorescence intensity analysis showed that FPCPHDs enhanced gene transfection and expression in KB cells. Moreover, gene transfection and expression in KB cells were inhibited by free folic acid. Intracellular trafficking of FPCPHDs in KB cells showed that FPCPHDs could rapidly escape from endo-lysosomes and become exclusively located in the nucleus at 3 h post transfection. In addition, FPCPHDs exhibited increased red fluorescence protein (RFP) expression at the tumor site of S180 xenograft nude mice. All results suggest that FPCPHDs is an efficient approach to improve the transfection and expression efficiency in most FR-positive cancer cells. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available