4.8 Article

A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells

Journal

BIOMATERIALS
Volume 33, Issue 11, Pages 3205-3215

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.01.020

Keywords

Calcium phosphate; Stem cell; Bone morphogenetic protein; Osteogenesis

Funding

  1. Netherlands Ministry of Economic Affairs
  2. Netherlands Ministry of Education, Culture and Science
  3. IDO [05/009-QuEST]

Ask authors/readers for more resources

The response of osteoprogenitors to calcium (Ca2+) is of primary interest for both normal bone homeostasis and the clinical field of bone regeneration. The latter makes use of calcium phosphate-based bone void fillers to heal bone defects, but it is currently not known how Ca2+ released from these ceramic materials influences cells in situ. Here, we have created an in vitro environment with high extracellular Ca2+ concentration and investigated the response of human bone marrow-derived mesenchymal stromal cells (hMSCs) to it. Ca2+ enhanced proliferation and morphological changes in hMSCs. Moreover, the expression of osteogenic genes is highly increased. A 3-fold up-regulation of BMP-2 is observed after only 6 h and pharmaceutical interference with a number of proteins involved in Ca2+ sensing showed that not the calcium sensing receptor, but rather type L voltage-gated calcium channels are involved in mediating the signaling pathway between extracellular Ca2+ and BMP-2 expression. MEK1/2 activity is essential for the effect of Ca2+ and using microarray analysis, we have identified c-Fos as an early Ca2+ response gene. We have demonstrated that hMSC osteogenesis can be induced via extracellular Ca2+, a simple and economic way of priming hMSCs for bone tissue engineering applications. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available