4.4 Article

Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface

Journal

INFECTION AND IMMUNITY
Volume 68, Issue 4, Pages 2315-2322

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.68.4.2315-2322.2000

Keywords

-

Ask authors/readers for more resources

Cryptosporidium parvum is an intracellular protozoan parasite that causes a severe diarrheal illness in humans and animals. Previous ultrastructural studies have shown that Cryptosporidium resides in a unique intracellular compartment in the apical region of the host cell. The mechanisms by which Cryptosporidium invades host intestinal epithelial cells and establishes this compartment are poorly understood. The parasite is separated from the host cell by a unique electron-dense structure of unknown composition. We have used indirect immunofluorescence microscopy and confocal laser scanning microscopy to characterize this structure. These studies indicate that host filamentous actin is assembled into a plaque-like structure at the host-parasite interface during parasite invasion and persists during parasite development. The actin binding protein at-actinin is also present in this plaque early in parasite development but is lost as the parasite matures. Other actin-associated proteins, including vinculin, talin, and ezrin, are not present. We have found no evidence of tyrosine phosphorylation within this structure. Molecules known to link actin filaments to membrane were also examined, including alpha-catenin, beta-catenin, plakoglobin, and zyxin, but none was identified at the host-parasite junction. Thus, Cryptosporidium induces rearrangement of the host cell cytoskeleton and incorporates host cell actin and alpha-actinin into a host-parasite junctional complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available