4.8 Article

Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model

Journal

BIOMATERIALS
Volume 33, Issue 15, Pages 3846-3851

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.01.056

Keywords

Cartilage tissue engineering; Chondrocyte; Cell culture; Animal model; Transplantation

Funding

  1. High-Tech Research Center
  2. Ministry of Education, Culture, Sports, Science and Technology
  3. Ministry of Health, Labour and Welfare of Japan

Ask authors/readers for more resources

Lacking a blood supply and having a low cellular density, articular cartilage has a minimal ability for self-repair. Therefore, wide-ranging cartilage damage rarely resolves spontaneously. Cartilage damage is typically treated by chondrocyte transplantation, mosaicplasty or microfracture. Recent advances in tissue engineering have prompted research on techniques to repair articular cartilage damage using a variety of transplanted cells. We studied the repair and regeneration of cartilage damage using layered chondrocyte sheets prepared on a temperature-responsive culture dish. We previously reported achieving robust tissue repair when covering only the surface layer with layered chondrocyte sheets when researching partial-thickness defects in the articular cartilage of domestic rabbits. The present study was an experiment on the repair and regeneration of articular cartilage in a minipig model of full-thickness defects. Good safranin-O staining and integration with surrounding tissues was achieved in animals transplanted with layered chondrocyte sheets. However, tissue having poor safranin-O staining-not noted in the domestic rabbit experiments-was identified in some of the animals, and the subchondral bone was poorly repaired in these. Thus, although layered chondrocyte sheets facilitate articular cartilage repair, further investigations into appropriate animal models and culture and transplant conditions are required. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available