4.4 Article

Human cytomegalovirus immediate early glycoprotein US3 retains MHC class I molecules by transient association

Journal

TRAFFIC
Volume 1, Issue 4, Pages 318-325

Publisher

MUNKSGAARD INT PUBL LTD
DOI: 10.1034/j.1600-0854.2000.010405.x

Keywords

antigen presentation; coatomer; endoplasmic reticulum; Golgi; herpesvirus; histocompatibility complex; immune escape; intracellular protein transport; lysosome; protein degradation; retention; retrieval

Categories

Ask authors/readers for more resources

Human cytomegalovirus (HCMV) interferes with major histocompatibility complex (MHC) class I antigen presentation by a sequential multistep process to escape T cell surveillance. During the immediate early phase of infection, the glycoprotein US3 prevents intracellular transport of MHC class I molecules. Interestingly, US3 displays a significantly shorter half-life than US3-retained MHC class I molecules. Here we show that US3 associates only transiently with MHC class I molecules, exits the ER. and is inefficiently retrieved from the Golgi. US3 was degraded in a post-Golgi compartment, most likely lysosomes, because: i) Brefeldin A treatment prolonged the half-life of US3; and ii) US3 co-localized with the lysosomal marker protein LAMP in chloroquinetreated cells. In contrast, MHC class I molecules remained stable in the ER. Upon inhibition of protein synthesis MHC class I molecules were released suggesting that a continuous supply of newly synthesized US3 molecules is required for inhibition of transport. Thus, US3 does not seem to retain MHC class I molecules by a retrieval mechanism. Instead, our observations are consistent with US3 preventing MHC class I trafficking by blocking forward transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available