4.8 Article

The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells

Journal

BIOMATERIALS
Volume 32, Issue 31, Pages 7822-7830

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.04.034

Keywords

Dental pulp stem cells (DPSCs); Nanofibrous poly(L-lactic acid) (NF-PLLA) scaffold; Solid-walled (SW-PLLA) scaffold; Odontogenic differentiation; Mineralization

Funding

  1. National Institutes of Health [DE015384, DE017689]

Ask authors/readers for more resources

Previous studies have shown the superiority of nanofibrous (NF) poly(L-lactic acid) (PLLA) scaffolds in supporting the osteogenic differentiation of a few cell types and bone regeneration. The aim of the current study was to investigate whether NF-PLLA scaffolds are advantageous for the odontogenic differentiation and mineralization of human dental pulp stem cells (DPSCs) over solid-walled (SW) PLLA scaffolds. The in vitro studies demonstrated that, compared with SW scaffolds, NF scaffolds enhanced attachment and proliferation as well as odontogenic differentiation of human DPSCs. The alkaline phosphatase (ALP) activity and the expression of odontogenic genes of human DPSCs were increased on NF scaffolds compared with that on SW scaffolds. In addition, more mineral deposition was observed on the NF scaffolds, as demonstrated by von Kossa staining, calcium content measurement and scanning electron microscopy. Consistent with the in vitro studies, NF scaffolds promoted odontogenic differentiation and hard tissue formation compared with SW scaffolds after 8 weeks of ectopic transplantation in nude mice, as confirmed by von Kossa staining, Masson's trichrome staining and immunohistochemical staining for dentin sialoprotein. In conclusion, NF-PLLA scaffolds enhanced the odontogenic differentiation of human DPSCs and mineralization both in vitro and in vivo, and are promising scaffolds for dentin regeneration. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available