4.8 Article

Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors

Journal

BIOMATERIALS
Volume 32, Issue 11, Pages 2894-2906

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.12.039

Keywords

Tumor targeting; Paclitaxel; Polymeric micelles; Folic acid; Multidrug resistance

Funding

  1. National Basic Research Program of China 973 program [2007CB935802]
  2. National Natural Science Foundation of China [30873177]
  3. National Science and Technology Major Project [2009ZX09310-006]

Ask authors/readers for more resources

The aim of this study was to exploit the possibility of combination of active targeting function of folic acid by folate receptor-mediated endocytosis and overcoming multidrug resistance (MDR) by Pluronic block copolymers to promote drug delivery to MDR tumor following intravenous administration with paclitaxel (PTX) as model drug. Folic acid functionalized Pluronic P123/F127 mixed micelles encapsulating PTX (FPF-PTX) was firstly developed and tested in vitro and in vivo, while PTX-loaded Pluronic P123/F127 mixed micelles (PF-PTX) and Taxol were used as control. FPF-PTX was about 20 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake of FPF-PTX was found to be higher than that of PF-PTX due to the folate receptor-mediated endocytosis effect. In vitro cytotoxicity, cell apoptosis and cell cycle arrest studies also revealed that FPF-PTX was more potent than those of PF-PTX and Taxol. In vivo pharmacokinetic study in rats showed that the polymeric micelles significantly enhanced the bioavailability of PTX (similar to 3 fold) than Taxol. Moreover, in BALB/c mice bearing KBv MDR tumor xenografts, stronger antitumor efficacy was shown in FPF-PTX group, with good correlation between in vitro and in vivo. In conclusion, folate-conjugated Pluronic micelles could be a potential vehicle for delivering hydrophobic chemotherapeutic drugs to MDR tumors. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available