4.6 Article

Structural analysis of drug-DNA adducts by tandem mass spectrometry

Journal

ANALYST
Volume 125, Issue 4, Pages 627-633

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/a908920i

Keywords

-

Ask authors/readers for more resources

The utility of electrospray ionisation (ESI) tandem mass spectrometry (MS/MS) for the characterisation of ligand-oligonucleotide adducts is demonstrated with adducts formed between the oligonucleotide 5'-CACGTG-3' and both a platinating agent, cis-diamminedichloroplatinum(II) (cisplatin), and an alkylating ligand, n-bromohexylphenanthridinium bromide (phenC(6)Br). We have demonstrated previously that negative ion MS/MS spectra of alkylated oligonucleotides show a highly specific fragmentation pathway that enables the site of binding of the ligand to be readily identified. In comparison, the positive ion ESI-MS/MS spectra reported here also show a single major fragmentation pathway, but the dominant ion is the protonated ligand-base adduct. MS/MS of this ion confirms the site on binding of the ligand to the guanine base. MS/MS spectra of cisplatin adducts show much less specific fragmentation than alkylated adducts, particularly in the negative ion mode. This suggests that the ESI-MS/MS spectra of ligand DNA adducts are strongly influenced by the extent to which the ligand weakens the glycosidic bond in the residue to which it is bound. For platinating agents, which do not labilise the glycosidic bond, additional experiments involving MS/MS of source-generated product ions were required to enable isomeric adducts to be distinguished.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available