4.8 Article

Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain

Journal

BIOMATERIALS
Volume 32, Issue 24, Pages 5688-5697

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.04.032

Keywords

Hydrogel; Stroke; Epidermal growth factor; Tissue penetration; Poly(ethylene glycol); Drug delivery

Funding

  1. Heart and Stroke Foundation
  2. Natural Science and Engineering Research Council
  3. Ontario Neurotrauma Foundation
  4. Canadian Institute of Health Research

Ask authors/readers for more resources

One of the challenges in treating central nervous system (CNS) disorders with biomolecules is achieving local delivery while minimizing invasiveness. For the treatment of stroke, stimulation of endogenous neural stem/progenitor cells (NSPCs) by growth factors is a promising strategy for tissue regeneration. Epidermal growth factor (EGF) enhances proliferation of endogenous NSPCs in the subventricular zone (SVZ) when delivered directly to the ventricles of the brain; however, this strategy is highly invasive. We designed a biomaterials-based strategy to deliver molecules directly to the brain without tissue damage. EGF or poly(ethylene glycol)-modified EGF (PEG-EGF) was dispersed in a hyaluronan and methylcellulose (HAMC) hydrogel and placed epi-cortically on both uninjured and stroke-injured mouse brains. PEG-modification decreased the rate of EGF degradation by proteases, leading to a significant increase in protein accumulation at greater tissue depths than previously shown. Consequently, EGF and PEG-EGF increased NSPC proliferation in uninjured and stroke-injured brains; and in stroke-injured brains, PEG-EGF significantly increased NSPC stimulation. Our epi-cortical delivery system is a minimally-invasive method for local delivery to the brain, providing a new paradigm for local delivery to the brain. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available