4.8 Article

The influence of scaffold elasticity on germ layer specification of human embryonic stem cells

Journal

BIOMATERIALS
Volume 32, Issue 36, Pages 9612-9621

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.09.012

Keywords

Human embryonic stem cells; Differentiation; Germ layers; Scaffold elasticity

Funding

  1. Israel Science Foundation
  2. NIH [DE-016516, HL-060435]

Ask authors/readers for more resources

Mechanical forces are critical to embryogenesis, specifically, in the lineage-specification gastrulation phase, whereupon the embryo is transformed from a simple spherical ball of cells to a multi-layered organism, containing properly organized endoderm, mesoderm, and ectoderm germ layers. Several reports have proposed that such directed and coordinated movements of large cell collectives are driven by cellular responses to cell deformations and cell-generated forces. To better understand these environmental-induced cell changes, we have modeled the germ layer formation process by culturing human embryonic stem cells (hESCs) on three dimensional (3D) scaffolds with stiffness engineered to model that found in specific germ layers. We show that differentiation to each germ layer was promoted by a different stiffness threshold of the scaffolds, reminiscent of the forces exerted during the gastrulation process. The overall results suggest that three dimensional (3D) scaffolds can recapitulate the mechanical stimuli required for directing hESC differentiation and that these stimuli can play a significant role in determining hESC fate. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available