4.8 Article

Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor

Journal

BIOMATERIALS
Volume 32, Issue 12, Pages 3340-3350

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.01.048

Keywords

Catanionic surfactant; Solid lipid nanoparticle; Anti-epithelial growth factor receptor; Carmustine; Malignant glioblastomas cell

Funding

  1. National Science Council of the Republic of China

Ask authors/readers for more resources

Innovated catanionic solid lipid nanoparticles (CASLNs) carrying carmustine (BCNU) (BCNU-CASLNs) were grafted with anti-epithelial growth factor receptor (EGFR) (anti-EGFR/BCNU-CASLNs) and applied to inhibiting the propagation of human brain malignant glioblastomas cells. U87MG cells were treated with anti-EGFR/BCNU-CASLNs and stained for the expression of EGFR. The minimal average diameter of BCNU-CASLNs and maximal entrapment efficiency of BCNU emerged when the concentration of catanionic surfactants was 1 mm. An increase in the weight percentage of cacao butter (CB) reduced the zeta potential, enhanced the viability of human brain microvasscular endothelial cells (HBMECs), and decreased the expression of tumor necrosis factor-alpha by HBMECs. The dissolution rate of BCNU and inhibition against the multiplication of U87MG cells using anti-EGFR/BCNU-CASLNs followed the order: 100% CB > 0% CB > 50% CB. Anti-EGFR/BCNU-CASLNs demonstrated the properties including an effective delivery to U87MG cells and antiproliferative efficacy against the growth of malignant brain tumors. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available