4.8 Article

Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles

Journal

BIOMATERIALS
Volume 32, Issue 26, Pages 6234-6244

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.04.077

Keywords

Mesoporous silica nanoparticles; Anionic surfactant; Drug delivery system; Surfactant-assisted drug release; Non-cytotoxic nanomaterials; Intracellular drug delivery

Funding

  1. U.S. National Science Foundation [CHE-0809521]
  2. US Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0809521] Funding Source: National Science Foundation

Ask authors/readers for more resources

A series of mesoporous silica nanoparticles (MSNs) were synthesized using the co-structure directing method. A non-cytotoxic anionic surfactant, undec-1-en-11-yltetra(ethylene glycol) phosphate monoester surfactant (PMES), was used as a structure directing agent (SDA) together with aminopropyltrimethoxysilane that functioned as a co-structure directing agent (CSDA). The morphology and mesoporous structure of these materials were tuned by changing the molar ratio of CSDA and SDA. These mesoporous nanomaterials containing PMES inside the pores showed excellent biocompatibility in vitro. The cellular internalization and endosome escape of PMES-MSNs in cervical cancer cells (HeLa) was demonstrated by flow cytometry and confocal microscopy, respectively. The PMES-MSNs were used as drug delivery carriers for resveratrol, a low water solubility drug, by taking advantage of the hydrophobic environment created by the PMES micelle inside the pores. This surfactant-assisted delivery strategy was tested under physiological conditions showing an increase of the drug loading compared to the material without surfactant and steady release of resveratrol. Finally, the therapeutic properties of resveratrol-loaded PMES-MSNs were evaluated in vitro using HeLa and Chinese hamster ovarian cells. We envision that this surfactant-assisted drug delivery method using MSNs as nanovehicles would lead to a new generation of carrier materials for intracellular delivery of a variety of hydrophobic therapeutic agents. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available