4.6 Article

Mechanisms associated with methiocarb resistance in Frankliniella occidentalis (Thysanoptera: Thripidae)

Journal

JOURNAL OF ECONOMIC ENTOMOLOGY
Volume 93, Issue 2, Pages 464-471

Publisher

ENTOMOLOGICAL SOC AMER
DOI: 10.1603/0022-0493-93.2.464

Keywords

Frankliniella occidentalis; insecticide resistance; methiocarb; resistance mechanisms

Categories

Ask authors/readers for more resources

Biochemical mechanisms associated with methiocarb resistance were examined in laboratory-selected and field populations of the western flower thrips, Frankliniella occidentalis (Pergande). Seven populations were examined and they differed in their susceptibility to methiocarb by 30 times. Including the synergists piperonyl butoxide, a cytochrome P-450 monooxygenase inhibitor, or S,S,S-tributylphosphorotrithioate, an esterase inhibitor, in the methiocarb bioassays partially suppressed resistance in the most resistant populations. Tn vitro assays of general esterase, glutathione S-transferase, and acetylcholinesterase activities showed increased activity in some of the resistant populations and increased activity of the enzymes after methiocarb selection on one of the populations. Assays of acetylcholinesterase sensitivity to inhibition by methiocarb, dichlorvos, and eserine suggested insensitive acetylcholinesterase in two of the resistant populations. These results indicate that methiocarb resistance in F. occidentalis was polyfactorial and involved detoxification and altered target site. None of the biochemical assays showed interpopulation enzymatic differences strongly correlated with the level of methiocarb resistance. The possibilities for developing rapid biochemical diagnostic assays to detect methiocarb resistance in F. occidentalis are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available