4.8 Article

The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties

Journal

BIOMATERIALS
Volume 31, Issue 13, Pages 3465-3470

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.12.030

Keywords

Polyetheretherketone (PEEK); Ti coating; Biocompatibility; e-beam

Funding

  1. Ministry of Knowledge Economy, Republic of Korea
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [K0004129] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available