4.8 Article

Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage

Journal

BIOMATERIALS
Volume 31, Issue 4, Pages 658-668

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.09.083

Keywords

Phosphorylcholine; Cobalt alloy; Hip replacement prosthesis; Surface modificaiton; Cartilage; Friction

Funding

  1. Health and Welfare Research [H17-005]
  2. Research on Medical Devices for Improving Impaired QOL [H20-004]
  3. Japanese Ministry of Health, Labour and Welfare

Ask authors/readers for more resources

Migration of the artificial femoral head to the inside of the pelvis due to the degeneration of acetabular cartilage has emerged as a serious issue in resurfacing or bipolar hemi-arthroplasty. Surface modification of cobalt-chromium-molybdenum alloy (Co-Cr-Mo) is one of the promising means of improving lubrication for preventing the migration of the artificial femoral head. In this study, we systematically investigated the surface properties, such as lubricity, biocompatibility, and stability of the various modification layers formed on the Co-Cr-Mo with the biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer by dip coating or grafting. The cartilage/poly(MPC) (PMPC)-grafted Co-Cr-Mo interface, which mimicked a natural joint, showed an extremely low friction coefficient of <0.01, as low as that of a natural cartilage interface. Moreover, the long-term stability in water was confirmed for the PMPC-grafted layer; no hydrolysis of the siloxane bond was observed throughout soaking in phosphate-buffered saline for 12 weeks. The PMPC-grafted Co-Cr-Mo femoral head for hemi-arthroplasty is a promising option for preserving acetabular cartilage and extending the duration before total hip arthroplasty. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available