4.8 Article

The Adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding

Journal

BIOMATERIALS
Volume 31, Issue 6, Pages 1036-1044

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.10.017

Keywords

Albumin; Protein adsorption; Platelet adhesion; Haemocompatibility

Funding

  1. NIH, National Center for Research Resources [P20 RR-016461]

Ask authors/readers for more resources

Although albumin (Alb) is the most abundant plasma protein, it is considered to be non-adhesive to platelets, as it lacks any known amino acid sequences for binding platelet receptors. Recent studies have suggested that platelets adhere to adsorbed Alb by mechanisms linked to its conformational state. To definitively address this issue we used circular dichroism (CD) spectropolarimetry to characterize the conformation of Alb adsorbed on a broad range of surface chemistries from a wide range of Alb solution concentrations, with platelet adhesion examined using a lactate dehydrogenase (LDH) assay and scanning electron microscopy (SEM). Our results prove that platelets bind to adsorbed Alb through receptor-mediated processes, with binding sites in Alb exposed and/or formed by adsorption-induced protein unfolding. Most importantly, beyond a critical degree of unfolding, the platelet adhesion levels correlated strongly with the adsorption-induced unfolding in Alb. The blockage of Arg-Gly-Asp (RGD) specific platelet receptors using an Arg-Gly-Asp-Ser (RGDS) peptide led to significant inhibition of platelet adhesion to adsorbed Alb, with the extent of inhibition and morphology of adherent platelets being similar for both Alb and Fg. Chemical neutralization of arginine (Arg) residues in the adsorbed Alb layer inhibited platelet-Alb interactions significantly, indicating that Arg residues play a prominent role in mediating platelet adhesion to Alb. These results provide deeper insight into the molecular mechanisms that mediate the interactions of platelets with adsorbed proteins, and how to control these interactions to improve the blood compatibility of biomaterials for cardiovascular applications. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available