4.8 Article

Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration

Journal

BIOMATERIALS
Volume 31, Issue 8, Pages 2323-2334

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.11.073

Keywords

Nanofibers; DRG; Spinal cord; Glial guidance

Funding

  1. GEBERT RUF FOUNDATION (Basel, Switzerland)

Ask authors/readers for more resources

Artificial nerve conduits (NC) can be used as an alternative to autologous nerve grafts to enhance the repair of small nerve gaps. Current NC lack adequate molecular and structural functionalities. Thus, we developed silk fibroin NC (SF NC) that were loaded with glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) and topographically functionalized with aligned and non-aligned SF nanofibers. The SF NC were produced from fully functionalized SF membranes on which initial experiments were performed. DRG (dorsal root ganglions) sensory neurons and spinal cord (SpC) motor neurons, both from chicken embryos, exhibited an augmented length and rate of axonal outgrowth parallel to the aligned nanofibers. In addition, glial cells from DRG proliferated and migrated in close association and even slightly ahead of the outgrowing axons. On the contrary, axonal and glial growth was slower and randomly oriented on non-aligned nanofibers. The DRG and SpC explants were also inserted into the lumen of the finished SF NC. The unidirectional orientation of axo-glial outgrowth from the explants evidenced the preservation of the trophic and topographical functionalities in the SF NC. Bioactive GDNF and NGF were released in vitro from SF NC over 4 weeks. Thus, the developed functionalized SF NC hold promise to enhance functional recovery of injured peripheral nerves. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available