4.8 Article

Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates

Journal

BIOMATERIALS
Volume 31, Issue 24, Pages 6173-6181

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.04.045

Keywords

Hyaluronic acid; Tissue engineering; Hydrogel; Polyethylene glycol; Pentaerythritol; Bioartificial vascular graft

Funding

  1. NSF [EF-0526854]
  2. State of Utah Centers of Excellence Program

Ask authors/readers for more resources

Bioprinting enables deposition of cells and biomaterials into spatial orientations and complexities that mirror physiologically relevant geometries. To facilitate the development of bioartificial vessel-like grafts, two four-armed polyethylene glycol (PEG) derivatives with different PEG chain lengths, TetraPEG8 and TetraPEG13, were synthesized from tetrahedral pentaerythritol derivatives. The TetraPEGs are unique multi-armed PEGs with a compact and symmetrical core. The TetraPEGs were converted to tetra-acrylate derivatives (TetraPAcs) which were used in turn to co-crosslink thiolated hyaluronic acid and gelatin derivatives into extrudable hydrogels for printing tissue constructs. First, the hydrogels produced by TetraPAc crosslinking showed significantly higher shear storage moduli when compared to PEG diacrylate (PEGDA)-crosslinked synthetic extracellular matrices (sECMs) of similar composition. These stiffer hydrogels have rheological properties more suited to bioprinting high-density cell suspensions. Second, TetraPAc-crosslinked sECMs were equivalent or superior to PEGDA-crosslinked gels in supporting cell growth and proliferation. Third, the TetraPac sECMs were employed in a proof-of-concept experiment by encapsulation of NIH 3T3 cells in sausage-like hydrogel macrofilaments. These macrofilaments were then printed into tubular tissue constructs by layer-by-layer deposition using the Fab@Home printing system. LIVE/DEAD viability/cytotoxicity-stained cross-sectional images showed the bioprinted cell structures to be viable in culture for up to 4 weeks with little evidence of cell death. Thus, biofabrication of cell suspensions in TetraPAc sECMs demonstrates the feasibility of building bioartificial blood vessel-like constructs for research and potentially clinical uses. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available