4.6 Article

Glutathione-dependent conversion of N-ethylmaleimide to the maleamic acid by Escherichia coli:: an intracellular detoxification process

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 66, Issue 4, Pages 1393-1399

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.66.4.1393-1399.2000

Keywords

-

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The electrophile N-ethylmaleimide (NEM) elicits rapid K+ efflux from Escherichia coli cells consequent upon reaction with cytoplasmic glutathione to form an adduct, N-ethylsuccinimido-S-glutathione (ESG) that is a strong activator of the KefB and KefC glutathione-gated K+ efflux systems. The fate of the ESG has not previously been investigated. In this report we demonstrate that NEM and N-phenylmaleimide (NPM) are rapidly detoxified by E. coli. The detoxification occurs through the formation of the glutathione adduct of NEM or NPM, followed by the hydrolysis of the imide bond after which N-substituted maleamic acids are released. N-Ethylmaleamic acid is not toxic to E. coli cells even at high concentrations. The glutathione adducts are not released from cells, and this allows glutathione to be recycled in the cytoplasm. The detoxification is independent of new protein synthesis and NAD(+)-dependent dehydrogenase activity and entirely dependent upon glutathione. The time course of the detoxification of low concentrations of NEM parallels the transient activation of the KefB and KefC glutathione-gated K+ efflux systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available