4.8 Article

Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute

Journal

BIOMATERIALS
Volume 30, Issue 4, Pages 589-596

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.10.010

Keywords

Hydrogel; Polyvinyl alcohol; Polyacrylamide; Cartilage; Lubricity; Coefficient of friction

Ask authors/readers for more resources

Poly(vinyl alcohol) (PVA) has been advanced as a biomaterial for the fabrication of medical devices to be used as synthetic articular cartilage because of its viscoelastic nature, high water content, and biocompatibility. Key material requirements for such devices are high creep resistance to prevent mechanical instability in the joint and high water content to maintain a lubricious surface to minimize wear and damage of the cartilage counterface during articulation. The creep resistance of PVA hydrogels can be increased by high temperature annealing: however this process also collapses the pores, reducing the water content and consequently reducing the lubricity of the hydrogel surface [Bodugoz-Senturk H, Choi J, Oral E, Kung JH, Macias CE, Braithwaite G, et al. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials 2008;29(2):141-9.]. We hypothesized that polymerizing acrylamide (AAm) in the pores of the PVA hydrogel Would minimize the loss of lubricity during annealing by preventing the collapse of the pores and loss of water content. Increasing AAm content increased porosity and equilibrium water content and decreased the coefficient of friction, tear strength, crystallinity, and creep resistance in annealed PVA hydrogels. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available