4.8 Article

Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation

Journal

BIOMATERIALS
Volume 30, Issue 28, Pages 5234-5240

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.05.058

Keywords

Biofilm; Carboxybetaine; Non-fouling; Surface; Zwitterionic materials

Funding

  1. Defense Threat Reduction Agency/joint Science and Technology Office [HDTRA 1-07-1-0033]

Ask authors/readers for more resources

In this work, we report a systematic study of zwitterionic poly(carboxybetaine methacrylate) (pCBMA) grafted from glass surfaces via atom transfer radical polymerization (ATRP) for their resistance to long-term bacterial biofilm formation. Results show that pCBMA-grafted surfaces are highly resistant to nonspecific protein adsorption (fibrinogen and undiluted blood plasma) at 25, 30 and 37 degrees C. Long-term (over 24 h) colonization of two bacterial strains (Pseudomonas aeruginosa PAO1 and Pseudomonas putida strain 239) on pCBMA surface was studied using a parallel flow cell at 25, 30 and 37 degrees C. Uncoated glass cover slips were chosen as the positive reference. Results show that pCBMA coatings reduced long-term biofilm formation of P. aeruginosa up to 240 h by 95% at 25 degrees C and for 64 h by 93% at 37 degrees C, and suppressed R putida biofilm accumulation up to 192 h by 95% at 30 degrees C, with respect to the glass reference. The ability of pCBMA coatings to resist non-specific protein adsorption and significantly retard bacterial biofilm formation makes it a very promising material for biomedical and industrial applications. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available