4.8 Article

The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles

Journal

BIOMATERIALS
Volume 30, Issue 22, Pages 3672-3681

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.03.035

Keywords

Polyethylene; Osteolysis; Human osteoblasts; Osteocytes; MLO-Y4; Wear particles

Funding

  1. National Health and Medical Research Council of Australia (NHMRC)
  2. Douglas Wright Fellowship

Ask authors/readers for more resources

Polyethylene (PE) wear particles are associated with the osteolysis seen in aseptic loosening that leads to orthopaedic implant failure. While cells of the monocyte/macrophage lineage are implicated, evidence is now emerging that osteoblastic cells may also be affected by PE. In this study we investigated the effect of PE particles on osteoblasts, using a novel in vitro cell culture system that was developed to juxtapose cells and PE particles, replicating the 3-dimensional (31)) environment near implants. This system allowed normal human bone-derived cells (NHBC) to undergo differentiation into a mature osteocyte-like phenotype over a 21-28-day culture period. PE particles induced an increase in mRNA expression of the osteocyte markers E11, DMP-1 and SOST/sclerostin. NHBC responded to PE particles by increasing the mRNA expression of several genes associated with osteoclast formation and activity (RANKL, IL-8 and M-CSF) and decreased the expression of the osteoclast antagonist, OPG. PE also appeared to induce a switch in the RUNX2 control of gene expression from that of promoting matrix production (type I collagen) to inducing the expression of pro-osteoclastogenic genes. These results suggest that PE particles switch mature osteoblastic cells from an anabolic to a more catabolic phenotype. This concept was further supported by the finding that PE-induced expression of RANKL mRNA in the mouse osteocyte cell line, MLO-Y4. Overall, our results suggest that PE particles directly induce a change in the phenotype of mature osteoblasts and osteocytes, consistent with the net loss of bone near orthopaedic implants. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available