4.8 Article

Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria

Journal

BIOMATERIALS
Volume 30, Issue 19, Pages 3324-3331

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.02.029

Keywords

Calcium phosphate; Nanoparticles; Photodynamic therapy; Porphyrins; Polymers

Funding

  1. Ministry of Economics, Technology and Labor of Thuringia [2007 FE 0117]

Ask authors/readers for more resources

Calcium phosphate nanoparticles were surface-functionalized with different polymers, and photosensitizers were incorporated into this layer. The charge was adjusted by choosing the appropriate polymer. Methylene blue and 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) were used as photosensitizers. The particles showed a good performance with HIG-82 synoviocytes. For J774A.1 macrophages, they were toxic also in the dark, probably due to a lethal uptake of calcium. For HT29 epithelial cells. a moderate activity was observed. A good photoxicity was observed against the bacterial strain Staphylococcus aureus (Gram-positive), both with positively and negatively charged nanoparticles loaded with mTHPP. Against Pseudomonas aeruginosa (Gram-negative), good photoxicity was observed only with positively charged nanoparticles loaded with mTHPP. At higher concentrations, methylene blue-loaded nanoparticles were active against S. aureus. Thus, it is possible to prepare a water-dispersable system of dye-loaded calcium phosphate nanoparticles, but the efficiency depends on a number of parameters, e.g. particle charge, kind of polymer, and cell culture medium (e.g. the presence of proteins). (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available