4.7 Article

Elimination of spiral waves in cardiac tissue by multiple electrical shocks

Journal

PHYSICAL REVIEW E
Volume 61, Issue 4, Pages 4644-4647

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.61.4644

Keywords

-

Ask authors/readers for more resources

We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback algorithms for timing of the shocks: a local feedback algorithm [1] (using an external electrode placed directly on the tissue) and a global feedback algorithm [2] (using the electrocardiogram). Our main results are: application of the external current causes a parametric resonant drift similar to that reported in previous model computations; the ratio of the threshold of elimination of the spiral wave by multiple shocks to the threshold of conventional single shock defibrillation in our model for cardiac tissue is about 0.5, while earlier, less realistic models predicted the value about 0.2; we show that an important factor for successful defibrillation is the location of the feedback electrode and the best results are achieved if the feedback electrode or the ECG lead is located at the boundary (or edge) of the cardiac tissue; the local and the global feedback algorithms show similar efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available