4.8 Article

The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity

Journal

BIOMATERIALS
Volume 30, Issue 29, Pages 5701-5706

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.06.053

Keywords

CpG motif; Immunostimulatory activity; Oligodeoxynucleotides; Toll-like receptor 9; Dendrimer

Funding

  1. The Ministry of Health Labour and Welfare, Japan

Ask authors/readers for more resources

DNA containing unmethylated CpG dinucleotides, or CpG motifs, (CpG DNA) has been explored as a therapeutic agent, owing to its potent immunostimulatory activity. A previous study showing that Y-shaped (Y-) CpG DNA has a high immunostimulatory activity compared with single- or double stranded CpG DNA suggests the possibility that CpG DNA in a more complicated structure is a stronger activator of the immune system. In the present study, dendrimer-like DNA (DL-DNA) was prepared by ligating Y-DNA monomers. The DL-DNA of the second or third generation with 12 or 24 highly potent CpG motifs in one unit, respectively, were designed and successfully prepared for the first time. These DL-DNAs induced greater amounts of tumor necrosis factor-alpha and interleukin-6 from RAW264.7 macrophage-like cells than did a mixture of Y-DNA with the same sequences as the corresponding DL-DNA. DL-DNA was more efficiently taken up by RAW264.7 cells than Y-DNA, but the increase was lower than that exhibited by the levels of cytokine release. These results suggest that the dendritic structure formation is a potential approach to increasing the immunostimulatory activity of CpG DNA without any modifications of the chemical structure of the natural phosphodiester DNA. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available