4.8 Article

The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation

Journal

BIOMATERIALS
Volume 30, Issue 29, Pages 5505-5513

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.07.006

Keywords

Cell transplantation; Cell therapy; Cell aggregate; Intramuscular injection; Mesenchymal stem cell

Funding

  1. Veterans General Hospitals and University System of Taiwan [VGHUST97-P5-16]
  2. National Science Council, Taiwan, ROC [NSC97-2321-B-075A-001]

Ask authors/readers for more resources

Typical cell transplantation techniques involve the administration of dissociated cells directly injected into muscular tissues; however, retention of the transplanted cells at the sites of the cell graft is frequently limited. An approach, using spherically symmetric aggregates of cells with a relatively uniform size self-assembled in a thermo-responsive methylcellulose hydrogel system, is reported in the study. The obtained cell aggregates preserved their endogenous extracellular matrices (ECM) and intercellular junctions because no proteolytic enzyme was used when harvesting the cell aggregates. Most of the cells within aggregates (with a radius of approximately 100 mu m) were viable as indicated by the live/dead staining assay. After injection through a needle, the cell aggregates remained intact and the cells retained their activity upon transferring to another growth surface. The cell aggregates obtained under sterile conditions were transplanted into the skeletal muscle of rats via local injection. The dissociated cells were used as a control. It was found that the cell aggregates can provide an adequate physical size to entrap into the muscular interstices and offer a favorable ECM environment to enhance retention of the transplanted cells at the sites of the cell graft. These results indicated that the spherically symmetric cell aggregates developed in the study may serve as a cell delivery vehicle for therapeutic applications. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available