4.8 Article

Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 105, Issue 8, Pages 1095-1108

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI8574

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL061878, HL-62526, HL-61878, HL-58559, R01 HL053315] Funding Source: Medline

Ask authors/readers for more resources

The oxidative conversion of LDL into an atherogenic form is considered a pivotal event in the development of cardiovascular disease. Recent studies have identified reactive nitrogen species generated by monocytes by way of the myeloperoxidase-hydrogen peroxide-nitrite (MPO-H2O2-NO2-) system as a novel mechanism for converting LDL into a high-uptake form (NO2-LDL) for macrophages. We now identify the scavenger receptor CD36 as the major receptor responsible for high-affinity and saturable cellular recognition of NO2-LDL by murine and human macrophages. Using cells stably transfected with CD36, CD36-specific blocking mAbs, and CD36-null macrophages, we demonstrated CD36-dependent binding, cholesterol loading, and macrophage foam cell formation after exposure to NO2-LDL. Modification of LDL by the MPO-H2O2-NO2- system in the presence of up to 80% lipoprotein-deficient serum (LPDS) still resulted in the conversion of the lipoprotein into a high-uptake form for macrophages, whereas addition of less than 5% LPDS totally blocked Cu2+-catalyzed LDL oxidation and conversion into a ligand for CD36. Competition studies demonstrated that lipid oxidation products derived from 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine can serve as essential moieties on NO2-LDL recognized by CD36. Collectively, these results suggest that MPO-dependent conversion of LDL into a ligand for CD36 is a likely pathway for generating foam cells in vivo. MPO secreted from activated phagocytes may also tag phospholipid-containing targets for removal by CD36-positive cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available