4.8 Article

Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles

Journal

BIOMATERIALS
Volume 30, Issue 28, Pages 5104-5113

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2009.05.062

Keywords

Confocal microscopy; Nanoparticle; Stem cell; Transplantation

Funding

  1. A*STAR BMRC [R-397-000-062-305]
  2. National University of Singapore

Ask authors/readers for more resources

With the emergence of cell transplant as an attractive treatment modality for various diseases, there is a parallel need to track the fate of these cells to assess their therapeutic effectiveness. Here, we report the use of upconversion fluorescent nanoparticles, silica/NaYF4:Yb,Er, to dynamically track live myoblast cells in vitro and in a living mouse model of cryoinjured hind limb. Nanoparticles loaded into cells were confirmed for its intracellular uptake by confocal imaging, spectrophotometry and inductively coupled plasma analysis. Loaded nanoparticles demonstrated absolute resistance to photobleaching and were applied for dynamic imaging to real time track in vitro cell migratory activity for a continuous 5 h duration using a time-lapse confocal microscope. Direct observation on the direction, speed and cell-cell interaction of migrating cells was clearly visualized. In vivo confocal imaging of nanoparticle-loaded cells intravenously injected into a mouse tail vein showed them flowing in the ear blood vessels. Nanoparticle-loaded cells were also unambiguously identified with superior contrast against a negligible background at least 1300 mu m deep in a fully vascularized living tissue upon intramuscular injection. Spatiotemporal migratory activity of the transplanted cells within the three-dimensional living tissue was captured for at least 7 days post-delivery. Direct in vivo visualization of cell dynamics in the native tissue was unobtrusively followed over a 4 h time course and revealed subtle migratory activity of the transplanted cells. With these unique optical properties, we present silica/NaYF4:Yb,Er nanoparticles as a new fluorescent live cell tracker probe for superior in vitro and in vivo dynamic imaging. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available