4.8 Article

Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation

Journal

BIOMATERIALS
Volume 29, Issue 13, Pages 2143-2151

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.01.008

Keywords

viscoelasticity; ECM (extracellular matrix); endothelialization; cell proliferation; cross-linking; biomimetic material

Funding

  1. NIBIB NIH HHS [R21 EB007335-01, R21 EB007335, R01 EB009701] Funding Source: Medline
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0802286] Funding Source: National Science Foundation

Ask authors/readers for more resources

Hydrogels produced from self-assembling peptides and peptide derivatives are being investigated as synthetic extracellular matrices for defined cell culture substrates and scaffolds for regenerative medicine. In many cases, however, they are less stiff than the tissues and extracellular matrices they are intended to mimic, and they are prone to cohesive failure. We employed native chemical ligation to produce peptide bonds between the termini of fibrillized beta-sheet peptides to increase gel stiffness in a chemically specific manner while maintaining the morphology of the self-assembled fibrils. Polymerization, fibril structure, and mechanical properties were measured by SDS-PAGE, mass spectrometry, TEM, circular dichroism, and oscillating rheometry; and cellular responses to matrix stiffening were investigated in cultures of human umbilical vein endothelial cells (HUVECs). Ligation led to a fivefold increase in storage modulus and a significant enhancement of HUVEC proliferation and expression of CD31 on the surface of the gels. The approach was also orthogonal to the inclusion of unprotected RGD-functionalized self-assembling peptides, which further increased proliferation. This strategy broadens the utility of self-assembled pepticle materials for applications that require enhancement or modulation of matrix mechanical properties by providing a chemoselective means for doing so without significantly disrupting the gels' fibrillar structure. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available