4.8 Article

Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets

Journal

BIOMATERIALS
Volume 29, Issue 11, Pages 1676-1685

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.12.015

Keywords

cyclic RGD; liposomes; peptide modification; platelet-targeting

Funding

  1. NHLBI NIH HHS [HL-70263, R01 HL070263-04, R01 HL070263] Funding Source: Medline

Ask authors/readers for more resources

Platelet adhesion, activation and fibrinogen-mediated aggregation are primary events in vascular thrombosis and occlusion. An injectable delivery system that can carry thrombolytics selectively to the sites of active platelet aggregation has immense potential in minimally invasive targeted therapy of vascular occlusion. To this end we are studying liposomes surface-modified by fibrinogen-mimetic RGD motifs that can selectively target and bind integrin GPIIb-IIIa on activated platelets. Here we report liposome surface-modification with a conformationally constrained high affinity cyclic RGD motif to modulate the GPIIb-IIIa-binding capability of the liposomes. Such affinity enhancement is important for practical in vivo applications to compete with native fibrinogen towards binding GPIIb-IIIa. The platelet-binding of RGD-modified liposomes was studied by fluorescence and scanning electron microscopy, and flow cytometry, in vitro. Binding of RGD-modified liposomes was also tested in vivo in a rat carotid injury model and analyzed ex vivo by fluorescence microscopy. The results from all experiments show that cyclic RGD-liposomes bind activated platelets significantly higher compared to linear RGD-liposomes. Hence, the results establish the feasibility of modulating the platelet-targeting and binding ability of vascularly targeted liposomes by manipulating the affinity of surface-modifying ligands. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available