4.8 Article

Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs

Journal

BIOMATERIALS
Volume 29, Issue 18, Pages 2767-2775

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2008.03.025

Keywords

intelligent microspheres; pH/thermo-responsive copolymers; pullulan; lower critical solution temperature; drug delivery

Ask authors/readers for more resources

Most part of pH- and temperature-sensitive microspheres used for the controlled delivery of drugs are not biodegradable. Therefore, the aim of this work is to prepare pH- and temperature-sensitive microspheres from biodegradable and biocompatible natural polymers. Pullulan microspheres were prepared by suspension cross-linking with epichlorohydrin of an aqueous solution of the polymer. In order to confer them temperature sensitivity, poly(N-isopropylacrylamide-co-acrylamide) was grafted onto pullulan microspheres. Then, the pH-sensitive units (-COOH) were introduced by reaction between the remaining -OH groups of the pullulan with succinic anhydride. The grafted pullulan microspheres are more hydrophilic than pullulan microspheres, their swelling degree as well as water regain increase significantly. The thermo-sensitivity of the carboxylated microspheres depends to the number and the ionization form (-COOH/-COO-) of carboxylic groups. At a low exchange capacity (0.35 meq/g), microspheres are thermo-sensitive both in the protonated and deprotonated form of -COOH groups. At a higher exchange capacity (2.25 meq/g), microspheres are almost unswellable in the protonated form and swell extensively in the ionized form (up to 28 times than their dried form) loosing in a great extent the thermo-sensitive properties. In isotonic phosphate buffer pH = 7.4, both thermo-sensitive and pH/ thermo-sensitive microspheres possess a phase transition temperature close to that of the human body temperature. Loading and release profiles of lysozyme, taken as a molecular model system, were investigated. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available